

LETTERS TO THE EDITOR

A FURTHER NOTE ON THE "RECURRENCE SCHEME FOR THE GENERATION OF TWO-DIMENSIONAL BOUNDARY CHARACTERISTIC ORTHOGONAL POLYNOMIALS TO STUDY VIBRATION OF PLATES"

D. XU AND T. Y. JIANG

Institute of High Performance Computing 89B Science Park Drive, #01-05/08, The Rutherford, Singapore Science Park 1 Singapore 118261

(Received 14 January 1999, and in final form 17 March 1999)

The author congratulates Drs. Bhat *et al.* [1] on their very interesting presentation of the formulation utilizing the Rayleigh-Ritz method and incorporating a recurrence scheme to generate two-dimensional orthogonal polynomials that satisfy the essential boundary conditions for plate-vibration analysis.

This published letter offers two contributions:

- The extension of method of generation of orthogonal polynomials by Kowalski [2] to that which satisfies the essential boundary conditions of the rectangular plate.
- Verification of the orthonormality of the aforementioned polynomials generated by the extension of Kowalski [2].

With regard to the previous work on the use of two-dimensional orthogonal polynomials which satisfy the essential boundary conditions, the incorporation of a recurrence scheme for the polynomial generation together with the Rayleigh-Ritz method has been extensively used by a group of previous authors for free vibration analysis of various plate structures. These studies are namely Lam *et al.* [3–5], Lam and Liew [6], Liew and Lam [7–9] and Liew *et al.* [10–11]. In these studies, rectangular and skewed plates were considered. In addition, circular and elliptic plates were also considered.

In these studies [3–11], the Gram–Schmidt process was employed to generate the two-dimensional orthogonal polynomials which satisfy the essential boundary conditions. Thus the authors' statement which claims that "no such recurrence relation was employed in constructing the two-dimensional boundary orthogonal polynomials" is not exactly accurate in light of references [3–11]. Also, the following authors' statement which infers that all previous studies in terms of construction of two-dimensional boundary characteristic orthogonal polynomials "were generated by orthogonalizing with all the previously generated orthogonal polynomials" is inaccurate again in light of references [3–11]. As in the authors paper (Bhat, Chakraverty and Stiharu), the recurrence scheme used in references [3–11] makes use of the two latest generated polynomials in generating a new one.

REFERENCES

- 1. R. B. BHAT, S. CHAKRAVERTY and I. STIHARU 1998 *Journal of Sound and Vibration* **216**, 321–327. Recurrence scheme for the generation of two-dimensional boundary characteristic orthogonal polynomials to study vibration of plates.
- 2. M. A. KOWALSKI 1982 SIAM Journal of Mathematical Analysis 13, 309–315. The recursion formulas for orthogonal polynomials in *n* variables.
- 3. K. Y. LAM, K. M. LIEW and S. T. CHOW 1989 *Composite Structures* 13, 239–250. 2-dimensional orthogonal polynomials for vibration of rectangular composite plates.
- 4. K. Y. LAM, K. M. LIEW and S. T. CHOW 1990 International Journal of Mechanical Sciences 32, 455–464. Free vibration analysis of isotropic and orthotropic triangular plates.
- 5. K. Y. LAM, K. M. LIEW and S. T. CHOW 1992 Journal of Sound and Vibration 154, 261–269. Use of 2-dimensional orthogonal polynomials for vibration analysis of circular and elliptic plates.
- 6. K. Y. LAM and K. M. LIEW 1992 *Computational Mechanics* 9, 113–120. A numerical model based on orthogonal plate functions for vibration of ring supported elliptical plates.
- 7. K. M. LIEW and K. Y. LAM 1990 *Journal of Sound and Vibration* **139**, 241–252. Application of 2-dimensional orthogonal plate function to flexural vibration of skew plates.
- 8. K. M. LIEW and K. Y. LAM 1991 International Journal of Solids and Structures 27, 189–203. A Rayleigh–Ritz approach to transverse vibration of isotropic and anisotropic trapezoidal plates using orthogonal plate functions.
- 9. K. M. LIEW and K. Y. LAM 1991 ASME *Journal of Vibration and Acoustics* 113, 182–186. A set of orthogonal plate functions for flexural vibration of regular polygonal plates.
- 10. K. M. LIEW, K. Y. LAM and S. T. CHOW 1989 *Composite Structures* 13, 123–132. Study on flexural vibration of triangular composite plates influenced by fibre orientation.
- 11. K. M. LIEW, K. Y. LAM and S. T. CHOW 1990 *Computers and Structures* 34, 79–85. Free vibration analysis of rectangular plates using orthogonal plate function.

AUTHORS' REPLY

R. B. BHAT, S. CHAKRAVERTY AND I. STIHARU

Department of Mechanical Engineering, Concordia University, 1455 de Maisonneuve Boulevard W., Montréal, Québec, Canada H3G 1M8

(Received 21 April 1999, and in final form 4 May 1999)

The authors would like to thank Dr Xu and Dr Jiang for their nice comments on our Letter to the Editor [1].

The idea of constructing orthogonal polynomials, satisfying the boundary conditions of vibrating structures, using the Gram–Schmidt orthogonalization process, was originally proposed by Bhat [2] in 1985. These were used to study the vibration of one-dimensional structures or vibration of rectangular plates where